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Molecular dynamics computer simulations have been carried out in the smectic-A phase of stiff wormlike
rods. The analysis of the long trajectories generated has allowed for a detailed insight into that diffusion
mechanism which is operative in the above-mentioned liquid-crystalline phase, as recently visualized in a
system of colloidal virus rods. Fast particles, i.e., those able to move abruptly out from one into an adjacent
layer, have been identified. Their properties, such as the velocity autocorrelation function and the orientational
distribution function, have been determined and compared to the corresponding quantities valid for a generic
rod.
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Smectic-A �SA� liquid crystals are complex fluids charac-
terized by a layered structure. While moving, the constituent
particles tend to not only maintain, as in the nematic phase,
their principal axis along a preferred direction, the director
�n̂�, but also reside within a layer, the normal of which co-
incides with n̂ �1�. Particle diffusion in SA phases was al-
ready addressed in computational and experimental papers
�e.g., Refs. �2–8��. These papers reported on the value of the
diffusion coefficients parallel �D�� and perpendicular �D�� to
the director, their temperature dependence, as well as the role
that the rare interlayer transverse particles might have in the
interlayer diffusion �3�, all recognizing that the motion of the
particles through the layers shows distinct characteristics
with respect to that within the layers. However, not one of
these studies addressed the peculiar mechanism by which the
particles move through the layers, which received the name
of permeation �9�.

One account on the permeation process at the single par-
ticle level has been recently presented in Ref. �10�, where a
system of fd virus particles in their SA phase �11� has been
investigated. Certain of these stiff rodlike particles have been
labeled with a fluorescent dye, so that their individual motion
in the SA environment formed by the other unlabeled fd par-
ticles could be directly visualized by fluorescence video mi-
croscopy. It has been observed that the diffusion through the
layers of these colloidal rods occurs via discrete jumps of
one particle length. Since the positions of the labeled rods
could be monitored, the mean-field layering potential energy
�Ulayer� and the mean-square displacements �MSDs� parallel
and perpendicular to the director in both the nematic and
smectic-A phases have been also determined. Interestingly,
Ulayer has been found to be sinusoidal, thus giving further
confirmation of this assumption, frequently adopted in the
theoretical calculations on the SA phase �e.g., Ref. �12��.
Equally of interest is the observation that D� in the SA phase
can be given in terms of the diffusion coefficient along the

director in the nematic phase multiplied by a factor depend-
ing on Ulayer, thus corroborating, to a certain extent, this sort
of assumption made in the analysis of experimental diffusion
data in the SA phase �8�. While the motion perpendicular to n̂
has been always found strongly subdiffusive in both the
nematic and smectic-A phases, irrespective of the value of
the ionic strength, the motion parallel to n̂ has been found
diffusive in the nematic phase and in the smectic-A phase at
high ionic strength but moderately subdiffusive in the
smectic-A phase at low ionic strength.

With the intention of being a hopefully useful comple-
ment to the experiments of Ref. �10�, the present work
investigates the permeation process in the SA of model
wormlike rods via molecular dynamics �MD� computer
simulations �13�.

The model particles, of mass m, are of the same type
employed previously �12,14–16�. Each of them consists of
nine beads. Two contiguous beads are maintained at a fixed
distance of 0.6�, with � the unit of length. The particle
length, �, is thus �5.8�. Harmonic bending interactions,
vlmn, of the type

vlmn = 1
2K�� − ��2, �1�

with � the angle formed by the lm and mn bonds and K the
relevant constant, regulate the stiffness of the beadlace rod.
Between two beads, i and j, belonging to either the same
particle or two different particles, the following truncated
and shifted Lennard-Jones interaction applies:

uij�r� = �4��	�

r

12

− 	�

r

6

+
1

4
� , r � 21/6� ,

0, r � 21/6� ,
� �2�

with � the unit of energy. The complete phase behavior of
these wormlike rods has been recently traced as a function of
K �16�. In the present work, K has been set to 5555�, a value
sufficiently large to ensure the existence of a SA phase �16�.

One well-equilibrated SA configuration of 600 of such
wormlike rods, taken from one of the previous MD runs
�17�, has been chosen to start an equilibration run in the
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microcanonical ensemble �13�. This run has lasted 107 time
steps, the duration of each time step having been 1.09
�10−4t*, with t*= � m

� �1/2� the unit of time. The equilibration
run has been then followed by two production runs, still in
the microcanonical ensemble. During the first, of 107 time
steps, the positions of the nine beads of all the wormlike rods
have been saved every 55 time steps and stored in a file for
the subsequent analysis. During the second, of 4�106 time
steps, the velocities of the nine beads of all the wormlike
rods have been saved every 35 time steps and stored in a file
for the subsequent analysis.

From the temporal evolution of the center of mass of each
wormlike rod, the MSD parallel ���

2� and perpendicular
���

2 � to the director have been computed according to the
formulas

��
2�t� = 
�r�t + �� · n̂��� − r��� · n̂����2� ,

��
2 �t� = 
�r�t + �� � n̂��� − r��� � n̂����2� , �3�

where r�t� and n̂�t� are, respectively, the center-of-mass po-
sition and director at time t and 
¯� signifies a statistical
average over particles and time origins �. Parallel and
perpendicular diffusion coefficients D� and D� have been
calculated by the long time limit of MSDs through the stan-
dard Einstein relation. Figure 1 shows the two MSDs. Three
distinct regimes can be noticed. The parallel MSD is larger
than the perpendicular MSD at short times. This is expected
on the basis of the rodlike character of the particles; in the
nematic phase, this behavior persists at long times �e.g.,
Refs. �14,18,19��. The specific nature of the SA phase
emerges at intermediate times. The presence of layers exerts
a barrier over the motion along the director and the parallel
MSD significantly reduces its slope to such an extent that,
around 5t*, the values of the two MSDs approach and be-
come very similar. Concomitantly, also the ��

2 shows a de-
crease, which is, however, very gentle and of short duration.
The relatively high value of the plateau in the ��

2 is due to

the particle oscillations around the equilibrium position
within a layer; notwithstanding the high packing of the SA
phase, the amplitude of these oscillations is �0.8�, i.e.,
�15% of the particle length. Then, at longer times, after the
exchange of the values of the two MSDs has occurred, the
��

2 grows faster than the ��
2. The two MSDs reach a linear

behavior on a different time scale, after approximately 100t*
and 10t* for ��

2 and ��
2 , respectively. When both have

reached the diffusive behavior, the values of the diffusion
coefficients result to be D� =0.008�2t*−1 and D�

=0.034�2t*−1. The diffusion coefficient perpendicular to n̂ is
larger than the one parallel to n̂. This fact is not new, par-
ticularly in the case of thermotropic smectogenic liquid crys-
tals �e.g., Ref. �8��. It contrasts with the anisotropy of diffu-
sion coefficients reported in Ref. �10�, where it has been
found that D� for the fd colloidal rods is much larger than
D�. The experimental result of Ref. �10� is anyway reconcil-
able with previous and present data if one takes into account
that the shape anisotropy of the experimental colloidal par-
ticles is much larger than that typical of thermotropic me-
sogenic molecules as well as that of the present model
particles.

Being purely repulsive but without electrostatic charges,
the latter cannot clearly rationalize the difference in the char-
acteristics of MSD found in Ref. �10� by varying the ionic
strength, nor appear able to reproduce the significant subdif-
fusive behavior of the ��

2 observed in these experiments.
Nevertheless, purely repulsive models are known to be able
to account for many of the structural and dynamical proper-
ties of lyotropic liquid crystals. Therefore, it is of interest to
investigate whether the permeation process observed in the
experiment is also operative in the SA phase formed by the
elementary wormlike rods.

Presumably, this should be the case. Besides potentially
confirming this, computer simulation offers the additional
possibility to individuate the particles able to move across
two layers and determine their characteristics, which can
then be compared to the respective counterparts valid for
generic particles, not able to perform such a move, thus pro-
viding pieces of information perhaps not readily accessible
by experiments.

To these ends, it has seemed more convenient to com-
mence by analyzing the mean linear displacement �MLD�,
rather than the MSD, along the director. �� is defined in
analogy with Eq. �3�,

���t� = 
�r�t + �� · n̂��� − r��� · n̂����� . �4�

The distribution function pertinent to �� is 	�(z�t�). This
distribution function is normalized to unity every time t.
Thus, 	�(z�t�)dz represents the fraction of rods having trav-
eled a distance comprised between z and z+dz along n̂ in a
time t. For t=0, this distribution function is a 
 function. In
the limit of t→�, 	� becomes the equilibrium, undulated,
single-particle distribution function which is the characteris-
tic of a SA phase. The evolution of 	� from t=0 toward the
equilibrium limit can be appreciated in Fig. 2. Twelve curves
are shown: The first from the top, having the highest peak at
z=0, corresponds to t=11.424t*; every successive curve cor-
responds to a time t which is 1.5 larger than the time corre-
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FIG. 1. Mean-square displacements parallel ��� and perpendicu-
lar ��� to the director. The dashed line indicates the value of �2.
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sponding to the previous curve. Thus, the last curve shown
corresponds to a time t= �1.511��11.424t*=988.148t*. With
the increase of t, the peak at z=0 naturally decreases. Con-
comitantly, a second peak at a value of z approximately equal
to � starts and then grows. For the largest values of t, a third
peak at z approximately equal to 2 times the particle length,
�12�, starts to be noticeable. During this process, the values
of z approximately equal to one-half the particle length al-
ways exhibit a negligible probability density. This fact may
be taken as a first indication that the evolution of 	� could be
determined by a jumplike mechanism. In fact, if particles
slide one with respect to the other, staying a relatively con-
siderable amount of time in the interlayer region, those cor-
responding values of z would have a non-negligible probabil-
ity density.

One ulterior proof of the operativeness of a mechanism of
this type can be achieved by identifying those fast wormlike
rods that rapidly move out from one into an adjacent layer.
The identification protocol has been the following. First, two
large time intervals, t1=70.86t* and t2=239.36t*, have been
defined. Then, the trajectories of all the wormlike rods in

these time intervals have been scrutinized; if a particle has
moved along the director of a quantity J larger than 4.1�, it
is selected and labeled “passed,” and the time at which this
occurs is labeled tJ. The quantity J has been appropriately
chosen to lay in the tiny population range of 	� and close to
the interlayer distance, ��; in Fig. 2, the abscissa 4.1� cor-
responds to the incipience of the second peak, i.e., refers to a
particle approaching the next layer.

The dynamics of each of these “passed” particles has been
followed in the periods n
t, with n a positive integer and

t=0.18t*, preceding the registration of the above-defined
movement J, and the distribution functions, R�

n�z�, of the rod
displacements along the director in these periods of time, z
= �r�tJ� · n̂�tJ�−r�tJ−n
t� · n̂�tJ��, constructed. These distribu-
tion functions are all normalized to unity. They are plotted in
Fig. 3 for n=1,5 ,10,20 and t1 in panel �a�, and for n
=1,5 ,10,20,40 and t2 in panel �b�. Once having reversed
the time arrow, the fraction of the “passed” particles, pn, is
then given by

pn = �
J

�

dzR�
n�z� . �5�

One can notice that the distribution function for n=1 is cen-
tered about 1, that is, all the displacements are within a layer,
and the corresponding value of p1 is 0. Then, on increasing
n, the form of the distribution function rapidly changes, be-
coming broader; the abscissa of its peak moves toward larger
values. For n=10 already, the distribution function shows a
plateau extending from z�2 to z��. For n=20, the abscissa

FIG. 2. �Color online� �a� 	�(z�t�): Distribution functions of a
linear displacement along the director, z, at different intervals of
time t. The first from the top, having the highest peak at z=0,
corresponds to t=11.424t*; every successive curve corresponds to a
time t which is 1.5 larger than the time corresponding to the previ-
ous curve; the last curve shown corresponds to a t= �1.511�
�11.424t*=988.148t*. �b� Contour plot of 	�(z�t�).
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FIG. 3. �Color online� �a� R�
n�z� for t1: Distribution functions of

a linear displacement along the director, z, for fast particles at sev-
eral intervals of time n
t, 
t=0.18t*; n=1 �red�, n=5 �green�, n
=10 �blue�, n=20 �indigo�. Next to each line is reported the corre-
sponding number. �b� R�

n�z� for t2: Distribution functions of a linear
displacement along the director, z, for fast particles at several inter-
vals of time n
t, 
t=0.18t*; n=1 �red�, n=5 �green�, n=10 �blue�,
n=20 �indigo�, n=40 �black�. The colors-numbers correspondence
is the same as in panel �a�; moreover, the n=40 line is also
indicated.
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of the peak has already reached the value of �, but the dis-
tribution function is still broad. For n=40, apart from a re-
sidual, modest tail at smaller values of z, the distribution
function is well peaked around the abscissa corresponding to
one rod length. These changes in the form of the distribution
functions are accompanied by the corresponding increase in
the value of pn, 0.28 for n=5, 0.55 for n=10, 0.60 for n
=20, and 0.79 for n=40. These numbers, together with the
form of the parent distribution functions, indicate that the
majority of “passed” wormlike rods completes the passage
from one layer to another in a very short amount of time: For
example, at least 50% of particles have passed in 10
t, i.e.,
1.8t*. In fact, the distribution functions of Fig. 3 are insen-
sitive to the time window t1 or t2; the shortest between these
two time intervals, t1, is already sufficiently long to observe
the phenomenon. From Fig. 2, it is clear that the vast major-
ity of particles keeps staying in one layer for a considerable
amount of time: The peak at 0 in the panel �a� of that figure
is the highest for all curves shown. For example, the percent-
age of particles succeeding in the passage to one of the ad-
jacent layers over all the particles of the sample is approxi-
mately 8% after a time interval of 130t* has elapsed. These
successful wormlike rods have nevertheless passed in a very
short period of time, confirming that permeation is a rare and
sudden event.

Having individualized the fast particles, it is of interest to
investigate whether these particles have peculiar characteris-
tics.

First, the velocity of the “passed” particles is focused on.
In analogy with what was done for the identification of the
“passed” wormlike rods, three intervals of time are defined,
tv1, tv2, and tv3, whose duration is, respectively, 23.66t*,
35.50t*, and 53.31t*. Within these periods of time, the tra-
jectories of the particles are controlled and those particles
which have traveled more than J are identified. The instant at
which this happens is registered as tJ. One can define the
autocorrelation function of the velocity parallel to the direc-
tor as

C�
vv�t� = 
�v�t + �� · n̂�����v��� · n̂����� , �6�

with v�t� the center-of-mass velocity of a particle at time t.
The C�

vv�t� is computed for the “passed” particles for the
period of time of 600
tv, with 
tv=7.6�10−3t*, preceding
tJ. C�

vv�t� is also computed for all the wormlike particles. The
velocity autocorrelation functions concerning the fast rods as
well as the completely averaged velocity autocorrelation
function are displayed in Fig. 4. One can notice that all ve-
locity autocorrelation curves start at t=0 with the same
value, i.e., �kBT /m. Initially, even those rods which are so
fast to pass from one layer to another do not have a velocity
higher than that of the other rods. What makes these particles
fast is experienced at successive times. The C�

vv�t� of the fast
particles has a less negative rebound at approximately 0.2t*.
The faster the particle is, i.e., it is able to move across two
layers in a time at most equal to tv1 rather than tv3 or tv2, the
less deep is the negative lobe of the velocity autocorrelation
function. In fact, the depth of the negative lobe of the curve
corresponding to a time interval tv1 is lower than that of the
negative lobe of the curve corresponding to a time interval

tv2, and a similar comment applies to the pair of curves cor-
responding to time intervals tv2 and tv3. In addition, examin-
ing the tail of these functions at a time approximately equal
to t*, one can notice that, while the completely averaged
C�

vv�t� is still negative, the C�
vv�t� for the fast particles is less

negative or even positive. This means that, at t� t*, while a
generic rod tends to move in a direction opposite to the one
it had at t=0, a fast rod may even continue to proceed along
the initial direction. The differences between a generic rod
and a fast rod are well appreciated observing the integrals of
the velocity autocorrelation functions, I�

vv�t�. These functions
all have an initial rapid increase, followed by a descent in
correspondence of the negative lobe of C�

vv�t�. However, for
t� t*, while that corresponding to the completely averaged
C�

vv�t� keeps decreasing monotonically, those corresponding
to the fast particles oscillate around a constant value or even
increase in an oscillatory manner. This situation is reflected
in the behavior of the ��

2, which is the integral of the corre-
sponding I�

vv�t� and shown in the inset of Fig. 4. Two are the
characteristics relevant to be noticed. The subdiffusive be-
havior corresponding to the plateau observable around t
� t* and which characterizes the completely averaged ��

2 is
significantly reduced or even completely absent in the case
of fast rods. In addition, the long time slope of the ��

2’s for
the fast rods is an order of magnitude larger than that of the
completely averaged ��

2. Those rods which are able to pass
from one to an adjacent layer may be called “fast” not be-
cause they have an intrinsic larger velocity but because they
casually experience more favorable collisions with the other
wormlike rods. In this sense, rather than a jumplike mecha-
nism, passing particles are characterized by a fortuitous
chain of events, in which backward collisions are less
frequent.

In this regard, it is of interest to investigate whether these
fast particles have peculiar orientational characteristics that
might help them in receiving more favorable collisions from
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FIG. 4. �Color online� Velocity autocorrelation functions, C�
vv�t�:

Completely averaged �black� and those for fast rods �blue, tv3;
green, tv2; red, tv1�; integral of C�

vv�t�, I�
vv�t�, dashed lines. For clar-

ity, the ordinate of the functions I�
vv�t� are multiplied by 10. The

lowest curve corresponds to completely averaged C�
vv�t�, while the

successive curves to tv3, tv2, and tv1, respectively, on increasing
order. The inset shows the ��

2�t�: Completely averaged �black� and
those for fast rods �blue, tv3; green, tv2; red, tv1�.
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the surroundings. The Monte Carlo simulation work of Ref.
�3� already suggests that the very few particles which lay,
perpendicularly to the director, in the interstices between two
layers �20�, have no role in the diffusion mechanism. The
present Fig. 5 confirms this conclusion. In this figure, the
probability distribution function, W�P2� of P2= 3

2 �û · n̂�2− 1
2 ,

with û the principal axis of a rod, is depicted for both a
generic rod and a fast particle. The probability density to be
transverse, already very scanty for a generic rod, is more
than so for fast particles. The latter are well aligned with the
director during the passage. Not only transverse particles
have no role in the diffusion mechanism, as observed in Ref.
�3�, but having a transverse orientation with respect to the
director is even detrimental to the passage across smectic
layers.

Having identified the fast particles and characterized their
velocity autocorrelation function and orientational distribu-
tion function, it is of interest to investigate how long the
condition of being “fast” persists.

Figure 6 illustrates the probability density for a particle to
travel a distance r�,12 along the director in the time interval
�s ;2s�, with s=350t*, known that it has traveled for a dis-
tance r�,01 along the director in the time interval �0:s�. The

spots of this figure are separated by approximately 1 particle
length while moving in both directions of abscissa and ordi-
nate. One passage from one to a contiguous layer corre-
sponds to �r�,01 ,r�,12�= �0, ���� or ���� ,0�, while two subse-
quent passages to ���� , ����. The normalization of this
probability density has been carried out such that, for every
abscissa value, the integration over the ordinate values gives
1. This choice makes the population corresponding to r�,01
=k�, with k a nonzero integer, quantitatively comparable
with the population corresponding to r�,01=0. Without this
type of normalization, the probability density at r�,01=k�
would be much lower than that at r�,01=0, since the passages
are rare. The particles that have traveled in the first time
interval �0:s� of a quantity �k� are thus the “fast” particles,
while those corresponding to r�,01=0 have resided in a layer
during the first period. The latter may either continue to re-
side in the same layer ��r�,01 ,r�,12�= �0,0�� or move to a con-
tiguous layer ��r�,01 ,r�,12�= �0, �����, in the period �s ;2s�,
while those rods that have been fast in the first time interval
may retain ��r�,01 ,r�,12�= ���� , ����� or remit ��r�,01 ,r�,12�
= ���� ,0�� this condition. Figure 7 illustrates schematically
these considerations.

The fact that the chain of spots corresponding to r�,01
=k� shows essentially the same probability density values
than that corresponding to r�,01=0 demonstrates that the ca-
sually acquired condition of being “fast” is generally not
maintained for long. In fact, the probability density to pass
from one to the adjacent layer in the time interval �s ;2s� is
the same irrespective of the fact that the particle has suc-
ceeded or not to move through the layers in the previous
interval �0;s�.

Moreover, no connection exists between the probability to
pass and the distance a rod has traveled in a previous time
interval. This is demonstrated in Fig. 8, where the probability
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FIG. 5. �Color online� Distribution function, W, of P2 for a
generic rod �diamonds and black dashed line� and a fast rod �circles
and red solid line�.
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density for a particle to travel a distance r�,12 along the di-
rector in the time interval �s ;2s�, known that it has traveled
for a distance r01 in the time interval �0:s�, is shown. No
dependence of r�,12 on r01 is apparent. Only one wide spot is
observed for r�,12�0 or r�,12�k�.

The mechanism of passage of a rod from one to an adja-
cent layer has a number of characteristics in common with
the motion of a particle in a supercooled fluid �21–23�. In
both cases, a particle must escape from a cage; a mark of the
occurring of this phenomenon is the subdiffusive intermedi-
ate behavior of MSD. In addition, in both systems, one can
distinguish between “fast” or “mobile” particles and “ge-
neric” or “slow” particles. In supercooled fluids, clusters of
mobile particles �21� and strong cooperative motion �22�
have been observed, and the mobile particles collectively
move from one metabasin to another, maintaining their con-
dition for a long time �23�. In particular, a chainlike, collec-
tive, and cooperative mechanism was reported to be opera-
tive in supercooled fluids �22�. This type of mechanism is not
a priori entirely incompatible with the structure of a
smectic-A phase. In fact, one may imagine chains of rods
moving across the smectic layers, as schematically depicted
in Fig. 9.

If a mechanism of this kind were actually operative in the
present smectic-A phase of wormlike rods, it would imply
that the probability density of a passage in the period �s ;2s�

would be larger for the case of a rod having also passed in
the period �0;s� in Fig. 6, as well as the probability density
of a passage in the period �s ;2s� would have a maximum for
r01�� in Fig. 8. The conjoint absence of the former feature
in Fig. 6 and the latter feature in Fig. 8 seems to point to the
conclusion that a chainlike mechanism, involving collections
of rods moving cooperatively, is absent in the smectic-A
phase studied in the present work. It would appear, instead,
that fast rods individually execute the passages through the
layers and they acquire the condition of being fast as sud-
denly as they lose this.

In conclusion, the mechanism of diffusion in the
smectic-A phase of stiff wormlike rods has been studied by
molecular dynamics computer simulation. The present calcu-
lations reproduce the permeation behavior across the smectic
layers experimentally observed in the smectic-A phase of
colloidal fd virus rods �10�: Both model and real single par-
ticles move abruptly and rapidly from one to an adjacent
layer. In addition, computer simulations have offered the
possibility to analyze not only the trajectory of these fast
rods but also their velocity autocorrelation function and ori-
entational characteristics. From the latter point of view, it has
been observed that the fast rods have a major tendency to be
aligned along the director than generic rods. This fact seems
to be, prima facie, in contrast to what was observed in a real
colloidal sample formed by spherical particles, where it has
been seen that those particles making large displacements are
located in disordered regions �24�. This is expected in an
isotropic fluid. The observation that, in a smectic-A phase,
fast rods are more ordered than generic rods is nevertheless
in accord with the known coupling between diffusivity and
orientational order which exists in anisotropic fluids �25�.
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